Maxwell Technologies, Inc.
3888 Calle Fortunada
San Diego, CA 92123

21 August 2018

RE: D-Cells RoHS Declaration - External

To Our Valued Customers:

The EU Restriction on Hazardous Substances (RoHS) Directive (2011/65/EU) was recast from Directive 2002/95/EC on July 21, 2011, and member states are required to enforce the restrictions by January 2, 2013. It seeks to restrict the use of certain hazardous substances in electrical and electronic equipment by setting certain concentration limits for the following substances: lead (Pb), cadmium (Cd), mercury (Hg), hexavalent chromium (Cr6+), polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

Maxwell Technologies, Inc., along with its affiliates, vendors and partners, support the RoHS objective of preventing risks to human health and the environment, with a particular focus on workers involved in the management of electronic waste. Accordingly, Maxwell hereby declares that the products listed in Table 1 below do not contain any of the above mentioned substances in excess of the permitted concentrations.

Table 1

<table>
<thead>
<tr>
<th>BCAP0310 P270 T10</th>
<th>BCAP0310 P270 T13</th>
<th>BCAP0350 E270 T11</th>
<th>BCAP0350 E270 T13</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCAP0360 P270 S18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above statements are based upon one of the following techniques employed by Maxwell, its affiliates, vendors, or partners: certification at accredited test facilities; or through similarity in construction and materials used.

RoHS test reports prepared for Maxwell by an accredited facility are attached:

For additional questions or information, please contact your Maxwell Key Account Manager.

Maxwell Technologies, Inc. Doc. No. 3002476. Rev. 1
Client: Maxwell Technologies
9244 Balboa Ave San Diego, CA 92123 US

Test Item: Material samples for analysis
See material list

Identification: BCAP0310, 350

Delivery Condition: apparent good Date of Receipt: 5/29/2012

Testing Location: TÜV Rheinland of North America
2709 SE Otis Corley Dr, Suite 11 Bentonville, AR 72712 USA

Test Specification: Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)
Following the guidelines for Analysis IEC 62321

Test Result: The above described test object was tested and passed to the above-mentioned test specification.

Tested by: [Signature]

Checked by: [Signature]

6/1/2012 3/10/2014
Drew Dumas Mark Smith
Laboratory Technician Laboratory Manager

Other Aspects:

Test Method: IEC 62321:2008
Components were evaluated using one or more of the following methods:

XOS XRF Screening, Wet chemical analysis, or Manufacturer RoHS compliance mark/documentation.

Abbreviations:
ok / P = passed
fail / F = failed
n.a. / N = not applicable

This test report relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any safety mark on this or similar products.
1. **Testing Date(s):**

5/30/2012 - 6/1/2012

2. **Test Results** – For Model BCAP 350

Material List

<table>
<thead>
<tr>
<th>Material Number</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thermal Shrink, PET, Label/Sleeve</td>
</tr>
<tr>
<td>2</td>
<td>Tape, Polyimide, partially glued, width 15mm</td>
</tr>
<tr>
<td>3</td>
<td>EPDM Plug</td>
</tr>
<tr>
<td>4</td>
<td>Tape, PET, width 10mm</td>
</tr>
<tr>
<td>5</td>
<td>Electrode, carbon/foil</td>
</tr>
<tr>
<td>6</td>
<td>Paper Separator 48mm x ~40m</td>
</tr>
<tr>
<td>7</td>
<td>Can</td>
</tr>
<tr>
<td>8</td>
<td>Top Collector</td>
</tr>
<tr>
<td>9</td>
<td>Al Bowl Plug</td>
</tr>
<tr>
<td>10</td>
<td>Lid</td>
</tr>
<tr>
<td>11</td>
<td>Lid assembly connector</td>
</tr>
<tr>
<td>12</td>
<td>Rubber gasket</td>
</tr>
<tr>
<td>13</td>
<td>Tab Energy "V" Al 99.5</td>
</tr>
</tbody>
</table>
XOS XRF Report matrix

<table>
<thead>
<tr>
<th>Material No.</th>
<th>Cd</th>
<th>Cr^</th>
<th>Pb</th>
<th>Hg</th>
<th>Br^</th>
</tr>
</thead>
<tbody>
<tr>
<td>01a</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>01b</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>01c</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>01d</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>2</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>3</td>
<td><5.0</td>
<td><15</td>
<td>27</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>4</td>
<td><5.0</td>
<td><15</td>
<td>67</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>05a</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>05b</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>6</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>7</td>
<td><5.0</td>
<td><15</td>
<td><5.0</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>8</td>
<td><5.0</td>
<td><15</td>
<td>14</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>9</td>
<td><5.0</td>
<td>179</td>
<td>33</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>10</td>
<td><5.0</td>
<td><15</td>
<td>6.2</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>11</td>
<td><5.0</td>
<td><15</td>
<td>14</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>12a</td>
<td>WC</td>
<td>52</td>
<td>18</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>12b</td>
<td><5.0</td>
<td>41</td>
<td>8.1</td>
<td><4.0</td>
<td><5.0</td>
</tr>
<tr>
<td>12c</td>
<td><5.0</td>
<td>WC</td>
<td><5.0</td>
<td>41</td>
<td>184</td>
</tr>
<tr>
<td>13</td>
<td>5.7</td>
<td><15</td>
<td>6.8</td>
<td><4.0</td>
<td><5.0</td>
</tr>
</tbody>
</table>

Remark:
1. **RED TEXT:** These items are inconclusive by XRF-Screening – Refer to Wet Chemistry Results section.
2. NT = Not Tested (Bromine in Alloys)
3. ND = Not Detected (less than limits of detection)
4. WC = See Wet Chemistry Results

<table>
<thead>
<tr>
<th>Limits of Detection (mg/kg)</th>
<th>Cd</th>
<th>Br</th>
<th>Cd</th>
<th>Hg</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Wet Chemistry Results

Hexavalent Chromium:

<table>
<thead>
<tr>
<th>Material no.</th>
<th>Spot test for Cr VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>12c</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Cadmium

<table>
<thead>
<tr>
<th>Material No.</th>
<th>PPM (mg/kg)</th>
<th>LOD 5 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cd</td>
<td><5mg/kg</td>
</tr>
</tbody>
</table>

XRF Screening limits for different matrices

<table>
<thead>
<tr>
<th>Materials</th>
<th>Cr</th>
<th>Br</th>
<th>Cd</th>
<th>Hg</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallic</td>
<td>P<700<X</td>
<td>--</td>
<td>P<70<X≤130<F</td>
<td>P<700<X≤1300<F</td>
<td>P<700<X≤1300<F</td>
</tr>
<tr>
<td>Polymeric</td>
<td>P<700<X</td>
<td>P<300<X</td>
<td>P<70<X≤130<F</td>
<td>P<700<X≤1300<F</td>
<td>P<700<X≤1300<F</td>
</tr>
<tr>
<td>Electronic Components</td>
<td>P<500<X</td>
<td>P<250<X</td>
<td>P<40<X≤150<F</td>
<td>P<500<X≤1500<F</td>
<td>P<500<X≤1500<F</td>
</tr>
</tbody>
</table>

Instrument	Supplier/Vendor	Model / Type
X-ray Fluorescence Spectrometry | XOS | HD Prime |
ICP-MS | Agilent Technologies Inc. | 7700 |
GC-MS | Agilent Technologies Inc. | 6890/5975 |

3. Sample Photos

See attachment

4. Exemptions

Annex III: Applications exempted from the restriction in Article 4(1)

1. Mercury in single capped (compact) fluorescent lamps not exceeding (per burner):
 a) For general lighting purposes < 30 W: 5 mg
 Expires on 31 December 2011; 3.5 mg may be used per burner after 31 December 2011 until 31 December 2012; 2.5 mg shall be used per burner after 31 December 2012

TÜV Rheinland of North America · Bentonville, AR Office · 2709 SE Otis Corley Dr · U.S.A.
Tel.: 479-250-0060 Fax: 479-254-0821 · Mail: msmith@us.tuv.com · Web: www.us.tuv.com
b) For general lighting purposes $\geq 30\ W$ and $< 50\ W$: 5 mg
 Expires on 31 December 2011; 3.5 mg may be used per burner after 31 December 2011

c) For general lighting purposes $\geq 50\ W$ and $< 150\ W$: 5 mg

d) For general lighting purposes $\geq 150\ W$: 15 mg

e) For general lighting purposes with circular or square structural shape and tube diameter $\leq 17\ mm$
 No limitation of use until 31 December 2011; 7 mg may be used per burner after 31 December 2011

f) For special purposes: 5 mg

g) For general lighting purposes $< 30\ W$ with a lifetime equal or above 20 000 h: 3.5 mg
 Expires on 31 December 2017

2. Mercury in double-capped linear fluorescent lamps for general lighting purposes not exceeding (per lamp):
 a) Tri-band phosphor lamps
 1. Tri-band phosphor with normal lifetime and a tube diameter $< 9\ mm$ (e.g. T2): 5 mg
 Expires on 31 December 2011; 4 mg may be used per lamp after 31 December 2011
 2. Tri-band phosphor with normal lifetime and a tube diameter $\geq 9\ mm$ and $\leq 17\ mm$ (e.g. T5): 5 mg
 Expires on 31 December 2011; 3 mg may be used per lamp after 31 December 2011
 3. Tri-band phosphor with normal lifetime and a tube diameter $> 17\ mm$ and $\leq 28\ mm$ (e.g. T8): 5 mg
 Expires on 31 December 2011; 3.5 mg may be used per lamp after 31 December 2011
 4. Tri-band phosphor with normal lifetime and a tube diameter $> 28\ mm$ (e.g. T12): 5 mg
 Expires on 31 December 2012; 3.5 mg may be used per lamp after 31 December 2012
 5. Tri-band phosphor with long lifetime ($\geq 25\ 000\ h$): 8 mg
 Expires on 31 December 2011; 5 mg may be used per lamp after 31 December 2011

 b) Mercury in other fluorescent lamps not exceeding (per lamp):
 1. Linear halophosphate lamps with tube $> 28\ mm$ (e.g. T10 and T12): 10 mg
 Expires on 13 April 2012
 2. Non-linear halophosphate lamps (all diameters): 15 mg
 Expires on 13 April 2016
 3. Non-linear tri-band phosphor lamps with tube diameter $> 17\ mm$ (e.g. T9)
 No limitation of use until 31 December 2011; 15 mg may be used per lamp after 31 December 2011
 4. Lamps for other general lighting and special purposes (e.g. induction lamps)
 No limitation of use until 31 December 2011; 15 mg may be used per lamp after 31 December 2011

3. Mercury in cold cathode fluorescent lamps and external electrode fluorescent lamps (CCFL and EEFL) for special purposes not exceeding (per lamp):
 a) Short length ($\leq 500\ mm$)
 No limitation of use until 31 December 2011; 3.5 mg may be used per lamp after 31 December 2011

 b) Medium length ($> 500\ mm$ and $\leq 1500\ mm$)
 No limitation of use until 31 December 2011; 5 mg may be used per lamp after 31 December 2011

 c) Long length ($> 1500\ mm$)
 No limitation of use until 31 December 2011; 13 mg may be used per lamp after 31 December 2011

4. a) Mercury in other low pressure discharge lamps (per lamp)
 No limitation of use until 31 December 2011; 15 mg may be used per lamp after 31 December 2011

 b) Mercury in High Pressure Sodium (vapor) lamps for general lighting purposes not exceeding (per burner) in lamps with improved color rendering index $Ra > 60$:
 i. $P \leq 155\ W$
 No limitation of use until 31 December 2011; 30 mg may be used per burner after 31 December 2011
 ii. $155\ W < P \leq 405\ W$
 No limitation of use until 31 December 2011; 40 mg may be used per burner after 31 December 2011
 iii. $P > 405\ W$
 No limitation of use until 31 December 2011; 40 mg may be used per burner after 31 December 2011

 c) Mercury in other High Pressure Sodium (vapor) lamps for general lighting purposes not exceeding (per burner):
 i. $P \leq 155\ W$
 No limitation of use until 31 December 2011; 25 mg may be used per burner after 31 December 2011
 ii. $155\ W < P \leq 405\ W$
 No limitation of use until 31 December 2011; 30 mg may be used per burner after 31 December 2011
 iii. $P > 405\ W$
 No limitation of use until 31 December 2011; 40 mg may be used per burner after 31 December 2011

 d) Mercury in High Pressure Mercury (vapor) lamps (HPMV)
 TÜV Rheinland of North America · Bentonville, AR Office · 2709 SE Otis Corley Dr · U.S.A.
 Tel.: 479-259-0060 Fax: 479-234-0821 · Mail: mumith@us.tuv.com · Web: www.us.tuv.com
5. a) Lead in glass of cathode ray tubes
 b) Lead in glass of fluorescent tubes not exceeding 0.2 % by weight

6. a) Lead as an alloying element in steel for machining purposes and in galvanized steel containing up to 0.35 % lead by weight
 b) Lead as an alloying element in aluminum containing up to 0.4 % lead by weight
 c) Copper alloy containing up to 4 % lead by weight

7. a) Lead in high melting temperature type solders (i.e. lead-based alloys containing 85 % by weight or more lead)
 b) Lead in solders for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission, and network management for telecommunications
 c) I. Electrical and electronic components containing lead in a glass or ceramic other than dielectric ceramic in capacitors, e.g. piezoelectric devices, or in a glass or ceramic matrix compound
 II. Lead in dielectric ceramic in capacitors for a rated voltage of 125 V AC or 250 V DC or higher
 III. Lead in dielectric ceramic in capacitors for a rated voltage of less than 125 V AC or 250 V DC
 Expires on 1 January 2013 and after that date may be used in spare parts for EEE placed on the market before 1 January 2013
 IV. Lead in PZT based dielectric ceramic materials for capacitors which are part of integrated circuits or discrete semiconductors
 Expires on 21 July 2016

8. a) Cadmium and its compounds in one shot pellet type thermal cut-offs
 Expires on 1 January 2012 and after that date may be used in spare parts for EEE placed on the market before 1 January 2012
 b) Cadmium and its compounds in electrical contacts

9. a) Hexavalent chromium as an anticorrosion agent of the carbon steel cooling system in absorption refrigerators up to 0.75 % by weight in the cooling solution
 b) Lead in bearing shells and bushes for refrigerant-containing compressors for heating, ventilation, air conditioning and refrigeration (HVACR) applications

11. a) Lead used in C-press compliant pin connector systems
 May be used in spare parts for EEE placed on the market before 24 September 2010
 b) Lead used in other than C-press compliant pin connector systems
 Expires on 1 January 2013 and after that date may be used in spare parts for EEE placed on the market before 1 January 2013

12. Lead as a coating material for the thermal conduction module C-ring
 May be used in spare parts for EEE placed on the market before 24 September 2010

13. a) Lead in white glasses used for optical applications
 b) Cadmium and lead in filter glasses and glasses used for reflectance standards

14. Lead in solders consisting of more than two elements for the connection between the pins and the package of microprocessors with a lead content of more than 80 % and less than 85 % by weight
 Expired on 1 January 2011 and after that date may be used in spare parts for EEE placed on the market before 1 January 2011

15. Lead in solders to complete a viable electrical connection between semiconductor die and carrier within integrated circuit flip chip packages

16. Lead in linear incandescent lamps with silicate coated tubes
 Expires on 1 September 2013

17. Lead halide as radiant agent in high intensity discharge (HID) lamps used for professional reprography applications

18. a) Lead as activator in the fluorescent powder (1 % lead by weight or less) of discharge lamps when used as specialty lamps for diazoprinting reprography, lithography, insect traps, photochemical and curing processes containing phosphors such as SNS (Sr,Sr) 2 MgSi 2 O 7 : Pb)
b) Lead as activator in the fluorescent powder (1% lead by weight or less) of discharge lamps when used as sun tanning lamps containing phosphors such as BSB (BaS 2 O 5 ·Pb)
19. Lead with PbBlSn-Hg and PbInSn-Hg in specific compositions as main amalgam and with PbSn-Hg as auxiliary amalgam in very compact energy saving lamps (ESL)
Expires on 1 June 2011
20. Lead oxide in glass used for bonding front and rear substrates of flat fluorescent lamps used for Liquid Crystal Displays (LCDs)
Expires on 1 June 2011
21. Lead and cadmium in printing inks for the application of enamels on glasses, such as borosilicate and soda lime glasses
22. Lead in finishes of fine pitch components other than connectors with a pitch of 0.65 mm and less
May be used in spare parts for EEE placed on the market before 24 September 2010
23. Lead in solders for the soldering to machine through hole discoidal and planar array ceramic multilayer capacitors
24. Lead oxide in surface conduction electron emitter displays (SED) used in structural elements, notably in the seal frit and fritting
25. Lead oxide in the glass envelope of black light blue lamps
Expires on 1 June 2011
26. Lead alloys as solder for transducers used in high-powered (designated to operate for several hours at acoustic power levels of 125 dB SPL and above) loudspeakers
Expires on 24 September 2010
27. Lead bound in crystal glass as defined in Annex I (Categories 1, 2, 3 and 4) of Council Directive 69/493/EEC (1)
28. Cadmium alloys as electrical/mechanical solder joints to electrical conductors located directly on the voice coil in transducers used in high-powered loudspeakers with sound pressure levels of 100 dB (A) and more
29. Lead in soldering materials in mercury-free flat fluorescent lamps (which, e.g., are used for liquid crystal displays, design or industrial lighting)
30. Lead oxide in seal frit used for making window assemblies for Argon and Krypton laser tubes
31. Lead in solders for the soldering of thin copper wires of 100 μm diameter and less in power transformers
32. Lead in cermet-based trimmer potentiometer elements
33. Mercury used as a cathode sputtering inhibitor in DC plasma displays with a content up to 30 mg per display
Expires on 1 July 2010
34. Lead in the plating layer of high voltage diodes on the basis of a zinc borate glass body
35. Cadmium and cadmium oxide in thick film pastes used on aluminum bonded beryllium oxide
36. Cadmium in color converting II-VI LEDs (< 10 μg Cd per mm² of light-emitting area) for use in solid state illumination or display systems
Expires on 1 July 2014
37. Lead in X-ray test objects.
38. Lead stearate X-ray diffraction crystals.
40. Cadmium in photoresistors for analogue optocouplers applied in professional audio equipment
Expires on 31 December 2013

Annex IV: restrictions specific to medical devices and monitoring and control instruments

Equipment utilizing or detecting ionizing radiation
1. Lead, cadmium and mercury in detectors for ionizing radiation.
2. Lead bearings in X-ray tubes.
3. Lead in electromagnetic radiation amplification devices: micro-channel plate and capillary plate.
4. Lead in glass frit of X-ray tubes and image intensifiers and lead in glass frit binder for assembly of gas lasers and for vacuum tubes that convert electromagnetic radiation into electrons.
5. Lead in shielding for ionizing radiation.
7. Lead stearate X-ray diffraction crystals.

Sensors, detectors and elecrododes

1a. Lead and cadmium in ion selective electrodes including glass of pH electrodes.
1b. Lead anodes in electrochemical oxygen sensors.
1c. Lead, cadmium and mercury in infra-red light detectors.

Others

10. Lead and cadmium in atomic absorption spectroscopy lamps.

TUV Rheinland of North America • Bentonville, AR Office • 2709 SE Otis Corley Dr • U.S.A.
Tel.: 479-250-0660 Fax: 479-254-0821 • Mail: msmith@us.tuv.com • Web: www.us.tuv.com
11. Lead in alloys as a superconductor and thermal conductor in MRI.
12. Lead and cadmium in metallic bands creating superconducting magnetic circuits in MRI, SQUID, NMR (Nuclear Magnetic Resonance) or FTMS (Fourier Transform Mass Spectrometer) detectors. Expires on 30 June 2021.
13. Lead in counterweights.
14. Lead in single crystal piezoelectric materials for ultrasonic transducers.
15. Lead in solders for bonding to ultrasonic transducers.
16. Mercury in very high accuracy capacitance and loss measurement bridges and in high frequency RF switches and relays in monitoring and control instruments not exceeding 20 mg of mercury per switch or relay.
17. Lead in solders in portable emergency defibrillators.
18. Lead in solders of high performance infrared imaging modules to detect in the range 8-14 μm.
19. Lead in Liquid crystal on silicon (LCOS) displays.
20. Cadmium in X-ray measurement filters.
22. Lead acetate mixtures for use in stereotactic head frames for use with CT and MRI and in positioning systems for gamma beam and particle therapy equipment. Expires on 30 June 2021.
25. Lead in the surface coatings of pin connector systems requiring nonmagnetic connectors which are used durably at a temperature below – 20 °C under normal operating and storage conditions. Expires on 30 June 2021.
26. Lead in
 - solders on printed circuit boards,
 - termination coatings of electrical and electronic components and coatings of printed circuit boards,
 - solders for connecting wires and cables,
 - solders connecting transducers and sensors,
that are used durably at a temperature below – 20 °C under normal operating and storage conditions. Expires on 30 June 2021.
27. Lead in
 - solders,
 - termination coatings of electrical and electronic components and printed circuit boards,
 - connections of electrical wires, shields and enclosed connectors, which are used in
 a) magnetic fields within the sphere of 1 m radius around the isocentre of the magnet in medical magnetic resonance imaging equipment, including patient monitors designed to be used within this sphere,
 b) magnetic fields within 1 m distance from the external surfaces of cyclotron magnets, magnets for beam transport and beam direction control applied for particle therapy.
 Expires on 30 June 2020.
29. Lead in alloys, as a superconductor or thermal conductor, used in cryo-cooler cold heads and/or in cryo-cooled cold probes and/or in cryo-cooled equipotential bonding systems, in medical devices (category 8) and/or in industrial monitoring and control instruments. Expires on 30 June 2021.
30. Hexavalent chromium in alkali dispensers used to create photocathodes in X-ray image intensifiers until 31 December 2019 and in spare parts for X-ray systems placed on the EU market before 1 January 2020.
31. Lead, cadmium and hexavalent chromium in reused spare parts, recovered from medical devices placed on the market before 22 July 2014 and used in category 8 equipment placed on the market before 22 July 2021, provided that reuse takes place in auditable closed-loop business-to-business return systems, and that the reuse of parts is notified to the consumer. Expires on 21 July 2021.
32. Lead in solders on printed circuit boards of detectors and data acquisition units for Positron Emission Tomographs which are integrated into Magnetic Resonance Imaging equipment. Expires on 31 December 2019.
33. Lead in solders on populated printed circuit boards used in Directive 93/42/EEC class Ila and Iib mobile medical devices other than portable emergency defibrillators. Expires on 30 June 2016 for class Ila and on 31 December 2020 for class Iib.
34. Lead as an activator in the fluorescent powder of discharge lamps when used for extracorporeal photopheresis lamps containing BSP (βSi2O5·Pb) phosphors. Expires on 22 July 2021.
-End of Report-